

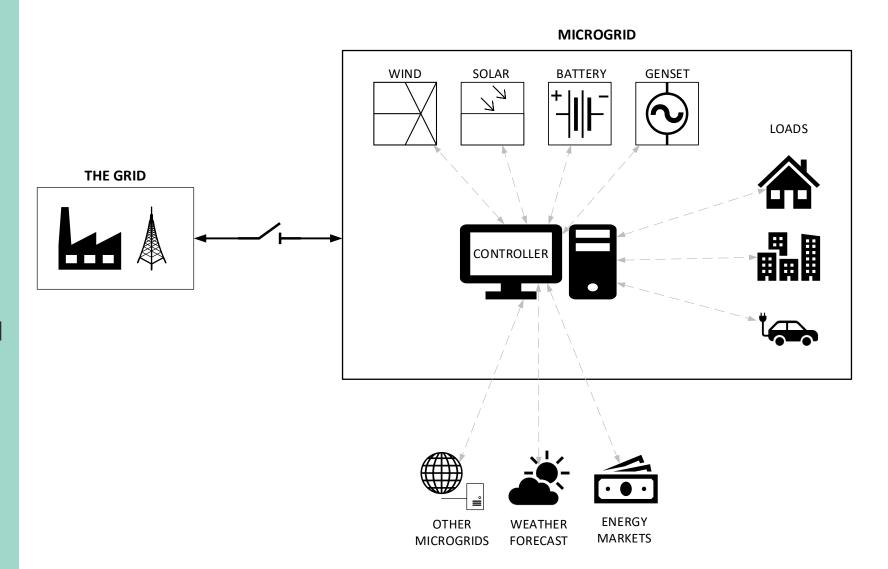
Microgrid feasibility for municipal applications

Maddie Koolbeck | Slipstream
Scott Semroc | City of Sun Prairie, WI
Lee Shaver | Slipstream

Maddie Koolbeck Research Analyst @ Slipstream

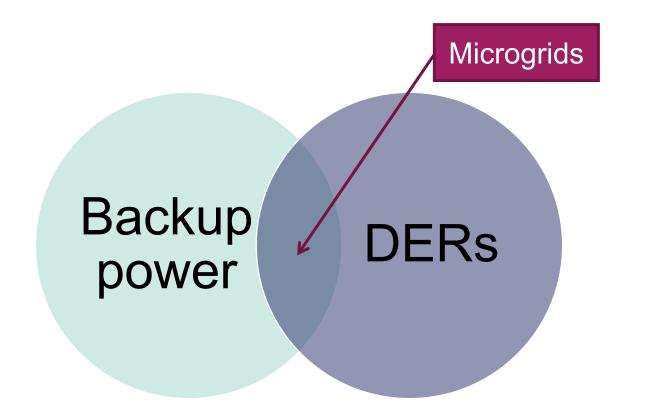
mkoolbeck@slipstreaminc.org

Agenda


Background and methods

Sun Prairie results and takeaways

Madison results and takeaways


"A group of interconnected loads and distributed energy resources [...] that acts as a single controllable entity with respect to the grid. A microgrid can connect and disconnect from the grid to enable it to operate in both grid-connected or island-mode"

-- DOE Microgrid Exchange Group

Key concepts

- Microgrids are about more than just backup power
- Solar PV on its own cannot provide backup power
 - Interconnection rules (IEEE 1547) require inverters to stop producing power when grid disturbances detected

Project overview

Climate Change

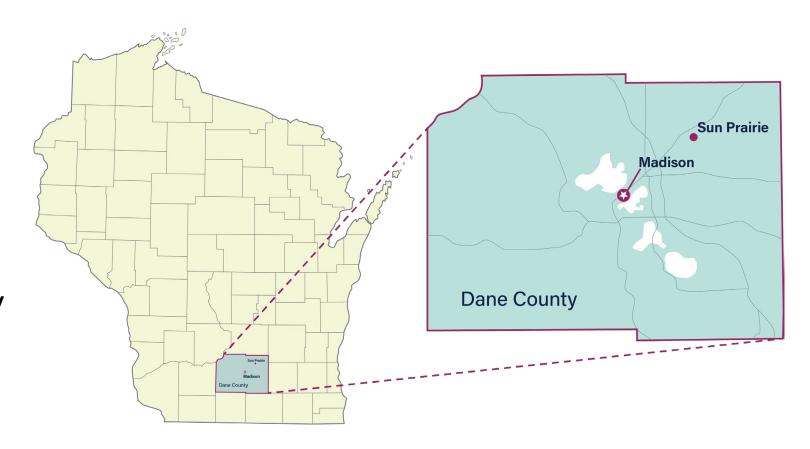
- Resiliency needs
- Constrained grid
- Emissions reduction urgency

Electrification

- Higher electric bills
- Electrical upgrades needed
- Choice of power source

Microgrids

- More DERs
- Greater resiliency


Project overview

Goal: evaluate environmental, resiliency, and financial benefits of microgrids

Technology: battery energy storage system and solar PV

Funding: Wisconsin Office

of Energy Innovation

Methods

Methods

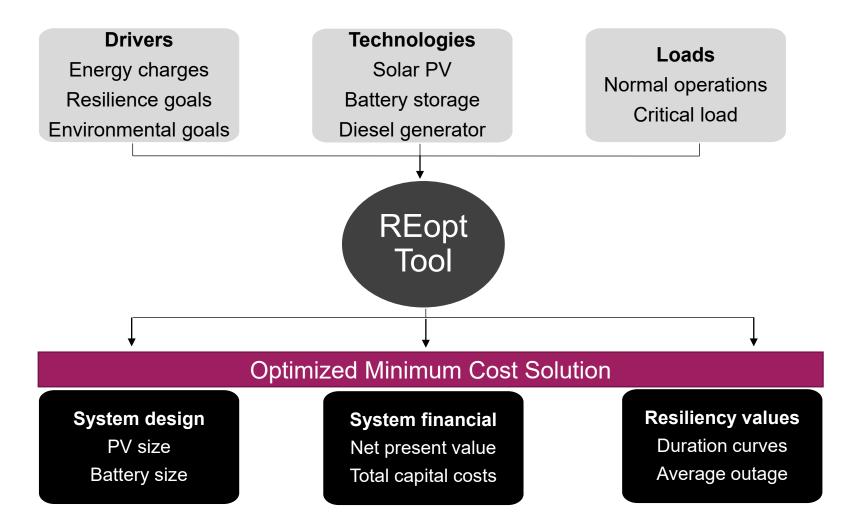
Evaluate tools Select final Explore initial Collect that allow for **scenarios** and **scenarios** and energy, cost, analysis of summarize technology, and compare highmicrogrid costs and site data level results critical features benefits

Stakeholder Engagement

Stakeholder Engagement

How does the site fit into the city resiliency plan?

What key functions are needed during outages?


How long should the microgrid have power during outages?

What will the utility's role be?

How does the site fit into the city climate plan?

REopt Optimization

Scott Semroc
Sustainability Coordinator @
City of Sun Prairie, WI
ssemroc@cityofsunprairie.com

Agenda

Background and methods

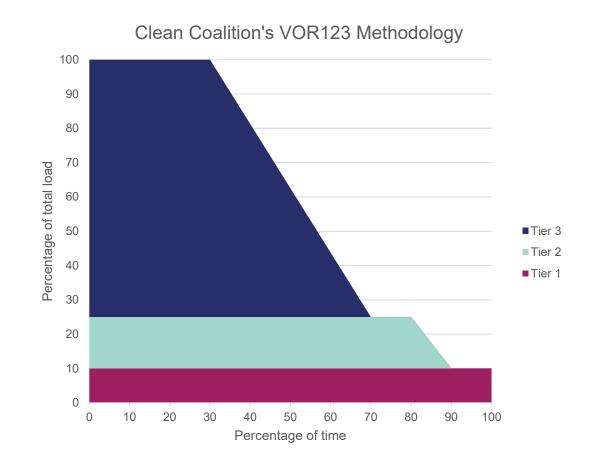
Sun Prairie results and takeaways

Madison results and takeaways

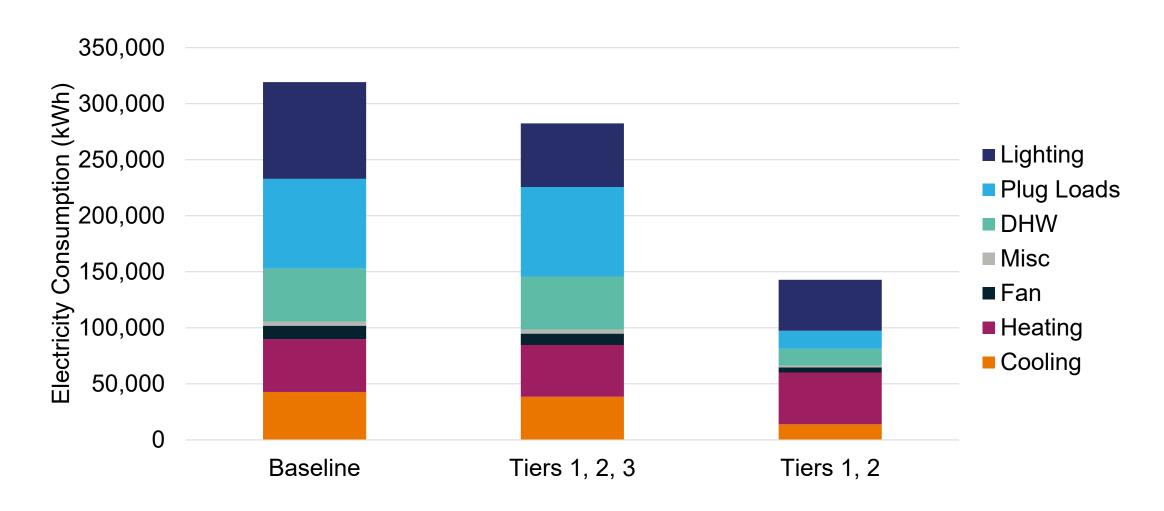
Sun Prairie

City of 36,000+ people

Interested in utilizing public library as Community Resiliency Center


Renovation/Expansion planned for 2024; no existing distributed energy resources

Defining Critical Load Tiers


Categories:

- Tier 1: Critical and lifesustaining loads
- Tier 2: Priority loads
- Tier 3: Discretionary loads
- Loads within a tier should never interfere with higher priority loads

Sun Prairie Energy Modeling

Sun Prairie Alternative Scenarios

Inputs	4 Hour Full Load	24 Hour Critical Load
Heating system	All-electric VRF system	All-electric VRF system
Rate structure	Time-of-use	Time-of-use
Critical loads	Tiers 1, 2, 3	Tiers 1 and 2
Outage length	4 hours	24 hours
Outage timing	June 19 1-5 pm	June 19 1 pm – June 20 1 pm
Renewable energy requirement	No constraint	No constraint
Health and climate costs	Not included	Not included

Sun Prairie Performance Outputs

Scenario	4 Hour Full Load	24 Hour Critical Load	
PV size (kW)	144	128	
BESS capacity (kW)	28	26	
BESS energy (kWh)	45	128	
Annual Percent Renewable Energy	54%	48%	
Resiliency Hours (Average)	3.5	35	
Net present value (\$)	\$27,000	\$7,200	
Simple Payback	17.2	18.9	

Takeaways

Battery size and cost increases with load and outage duration

All-electric heating systems improve financial performance

Systems covering shorter outages perform better financially but have lower resiliency

Resiliency is highest in spring and fall, lowest in winter

Putting a dollar value on societal benefits causes the NPV to increase over 10 times compared to the same building with no solar PV

Recommendations

- Specify a battery that can power critical loads for at least 24 hours
 - 26kW (size) / 128kWh (duration) BESS for ~\$80,000
 - 128kW Solar PV array ~\$225,000
- Consider all-electric HVAC solution
- Consider the resiliency and carbon benefits of microgrid/CRC
- Pursue potential grant funding options (WI OEI, US DOE)

Operational & Community Resiliency

Reviewed existing emergency operations plan and community shelter locations

Inventoried backup generators and identified potential upgrades

Highlighted opportunities for both CRCs and EOCs in the community

Reviewed backup generation procurement process and updated with microgrid option

Used plan for community resiliency efforts, mapped CRCs, and upgraded EOC capabilities

Lee Shaver
Energy Engineer @
Slipstream

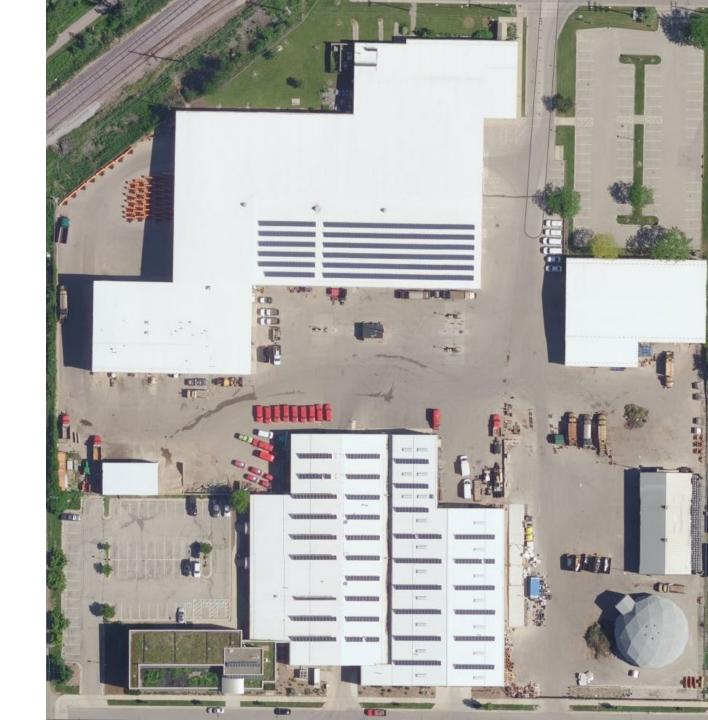
Ishaver@slipstreaminc.org

Agenda

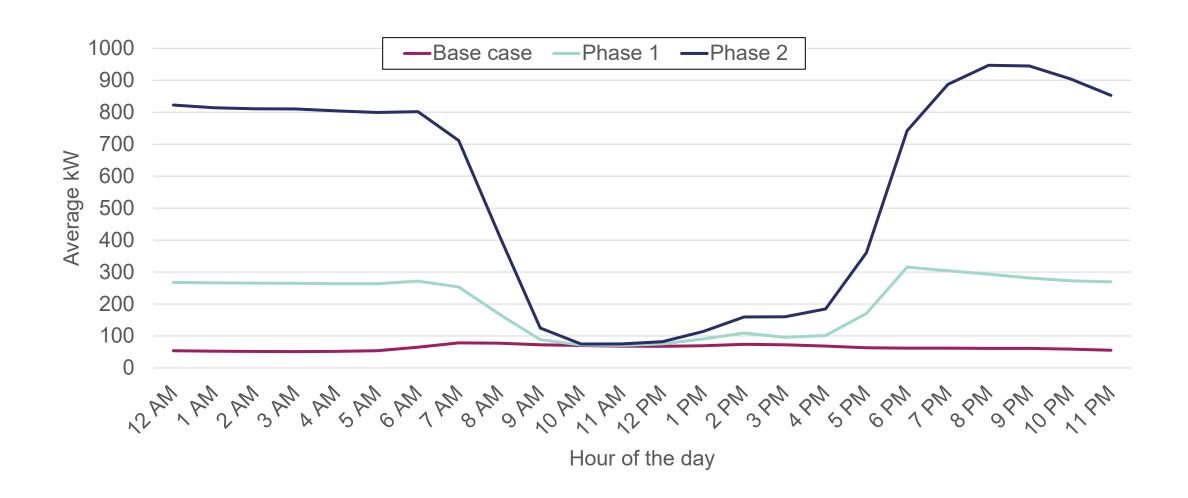
Background and methods

Sun Prairie results and takeaways

Madison results and takeaways


Madison

City of 269,000 people


Two adjacent critical infrastructure facilities

409 kW of rooftop solar planned; diesel and natural gas generator

Plan to electrify fleet of 230 vehicles

Fleet electrification load

Madison Alternative Scenarios

Inputs	Base case	Phase 1	Phase 1 BESS	Phase 2	Phase 2 BESS
Normal load profile	Facility	Facility + phase 1 EVs	Facility + phase 1 EVs	Facility + phase 2 EVs	Facility + phase 2 EVs
Critical load profile	Facility	Facility	Facility	Facility + phase 1 EVs	Facility + phase 1 EVs
Battery constraint	<10 MWh	<10 MWh	=10 MWh	<10 MWh	=10 MWh
Annual kWh	552,000	1,780,000	1,780,000	5,430,000	5,430,000

Madison Performance Results

Scenario	Base case	Phase 1	Phase 1 BESS	Phase 2	Phase 2 BESS
BESS capacity (kW)	40	49	417	73	1,308
BESS energy (kWh)	52	65	10,000	96	10,000
Initial Capital Costs	\$51,000	\$63,000	\$4,203,000	\$94,000	\$4,894,000
Net present value	\$5,700	\$8,200	-\$6,272,000	\$7,500	-\$5,443,000
Simple Payback	0	0	17	1	>25
Annual Total Renewable Energy	110%	34%	33%	11%	11%
Lifecycle CO ₂ emissions (tons)	-1,300	22,400	19,600	92,700	84,800
Resiliency Hours (Avg)	218	218	3,240	10	97

Madison Performance Results

Scenario	Base case	Phase 1	Phase 1 BESS	Phase 2	Phase 2 BESS
BESS capacity (kW)	40	49	417	73	1,308
BESS energy (kWh)	52	65	10,000	96	10,000
Initial Capital Costs	\$51,000	\$63,000	\$4,203,000	\$94,000	\$4,894,000
Net present value	\$5,700	\$8,200	-\$6,272,000	\$7,500	-\$5,443,000
Simple Payback	0	0	17	1	>25
Annual Total Renewable Energy	110%	34%	33%	11%	11%
Lifecycle CO ₂ emissions (tons)	-1,300	22,400	19,600	92,700	84,800
Resiliency Hours (Avg)	218	218	3,240	10	97

Madison Performance Results

Scenario	Base case	Phase 1	Phase 1 BESS	Phase 2	Phase 2 BESS
BESS capacity (kW)	40	49	417	73	1,308
BESS energy (kWh)	52	65	10,000	96	10,000
Initial Capital Costs	\$51,000	\$63,000	\$4,203,000	\$94,000	\$4,894,000
Net present value	\$5,700	\$8,200	-\$6,272,000	\$7,500	-\$5,443,000
Simple Payback	0	0	17	1	>25
Annual Total Renewable Energy	110%	34%	33%	11%	11%
Lifecycle CO ₂ emissions (tons)	-1,300	22,400	19,600	92,700	84,800
Resiliency Hours (Avg)	218	218	3,240	10	97

Lessons Learned Madison

Accounting for resiliency and emissions

	Base case	Phase 1	Phase 2	Phase 1 BESS	Phase 2 BESS
Total cost	\$122,200	\$208,600	\$211,000	\$7,503,000	\$8,210,400
Energy benefit	\$319,600	\$274,400	\$233,500	\$388,900	\$282,400
Resiliency benefit	\$2,248,900	\$2,746,700	\$916,200	\$2,746,700	\$6,633,300
NPV with resiliency	\$2,446,300	\$2,812,500	\$938,700	-\$4,367,400	-\$1,294,700
Emissions benefit	\$0	\$91,200	\$92,500	\$924,800	\$2,285,200
NPV with emissions + resiliency	\$2,446,300	\$2,903,700	\$1,031,200	-\$3,442,600	\$990,500

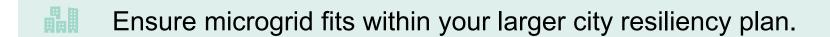
Takeaways

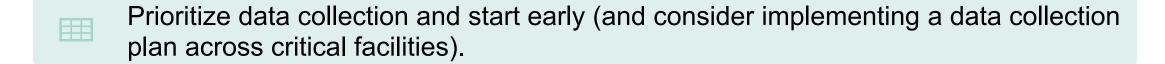
First concrete exercise in estimating the size and cost of a battery

Highlighted impact of seasonal and critical usage of an electric vehicle fleet

Developed checklist for "microgrid-ready" buildings

Next Steps


 Upgrade existing inverters **Smart** Implement SunSpec inverters Modbus for local control Perform a site survey to identify locations **BESS** Develop a battery and/or microgrid controller spec Upgrade existing chargers **Smart** charging Implement managed of EVs charging



Conclusion

Lessons Learned

- Identify and inventory the critical loads of the site with stakeholder input.
- Dedicate time to defining the monetary value of resiliency to the facility.
 - Run several scenarios to be able to visualize tradeoffs before determining key alternatives.

Thank you!

Project summaries and final reports:

www.slipstreaminc.org/ research/microgridsresilient-communities

Extra slides

Key terms

Islanding

The ability of a microgrid to disconnect from the grid while still serving loads internally

Resiliency

The ability to withstand and reduce the magnitude and/or duration of disruptive events

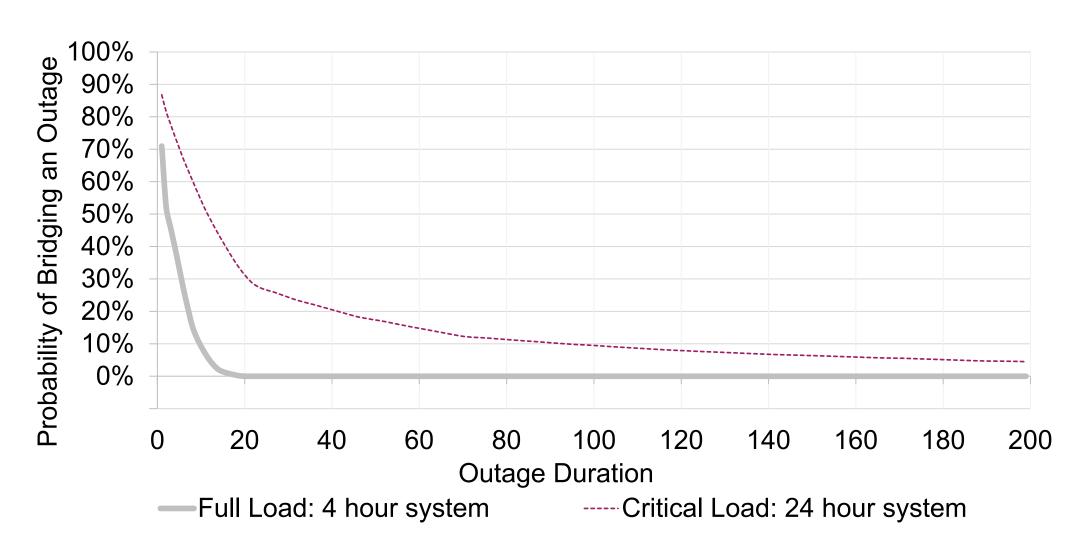
DERs

Distributed energy resources such as solar photovoltaics and battery energy storage systems (BESS)

Electrification

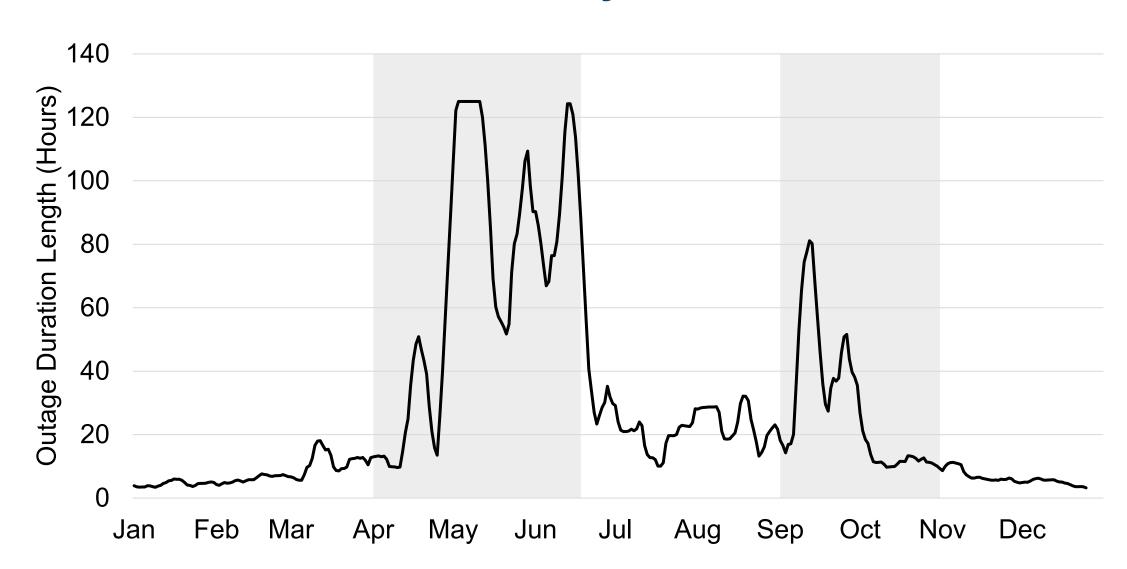
Conversion of fossil fuelburning end uses (heating, driving, cooking) to electric powered alternatives

CRC


Community resilience center

EOC

Emergency operations center



Sun Prairie Resiliency Results

Sun Prairie Resiliency Across the Year

Sun Prairie Building Recommendations

- Include energy efficiency in library renovation
 - Lighting
 - HVAC system
 - Plug load control
 - Small embedded data center
- Utilize microgrid ready design for a phased installation approach
 - Consider location for future battery (inside or outside)
 - Install compatible inverters on Solar PV

