

Microgrid feasibility study for Madison Streets and Engineering facilities

Lee Shaver, Energy Engineer Slipstream

Sustainable Madison Committee 29 September 2022

Agenda

Introduction


- What is a microgrid?
- Project overview
- Site overview

Microgrid optimization

- Fleet electrification
- Scenarios
- Results

Next steps

"A group of interconnected loads and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid. A microgrid can connect and disconnect from the grid to enable it to operate in both gridconnected or island-mode"

DOE Microgrid Exchange Group

MICROGRID WIND SOLAR BATTERY GENSET \mathcal{T} ╋ $\overline{}$ LOADS THE GRID CONTROLLER °∎ ENERGY OTHER WEATHER MARKETS MICROGRIDS FORECAST

Key terms

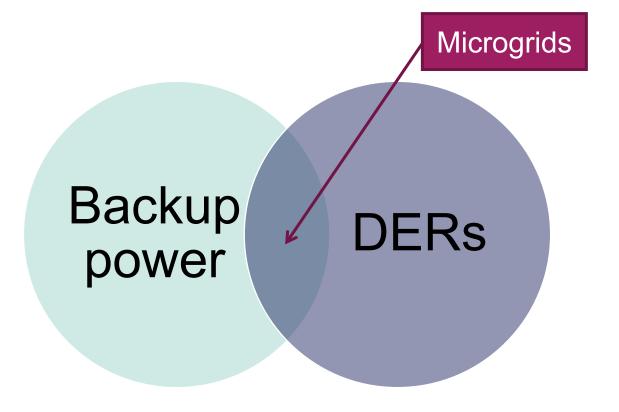
Islanding

The ability of a microgrid to disconnect from the grid while still serving loads internally

Resiliency

The ability to withstand and reduce the magnitude and/or duration of disruptive events

A policy which compensates power sold back to the grid at the same rate as consumption


Net metering

Electrification

Conversion of fossil-fuel end uses (spaceand waterheating) to electric

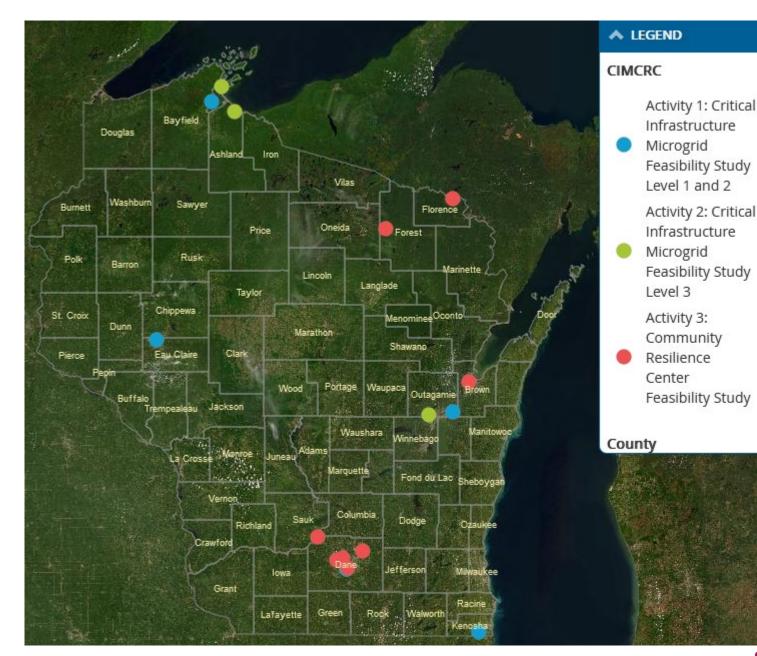
Key concepts

- Microgrids are about more than just backup power
- Solar PV on its own cannot provide backup power
 - Interconnection rules (IEEE 1547) require inverters to stop producing power when grid disturbances detected

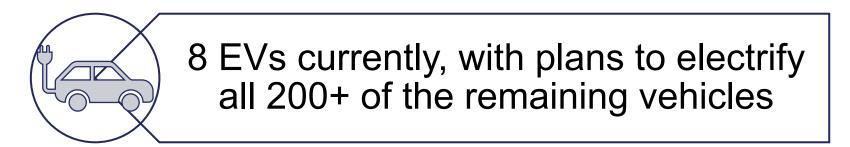
Project background

Climate change leads to

- Greater resiliency needs
- More constrained grid
- Emissions reduction urgency

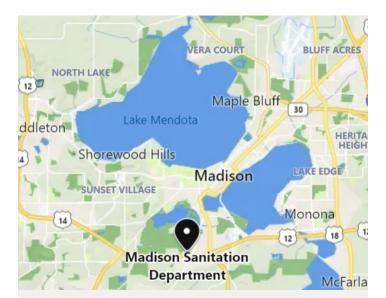

Microgrids!

Fleet electrification leads to


- Higher electric bills
- Electrical upgrades needed
- An opportunity to reduce grid emissions

Project background

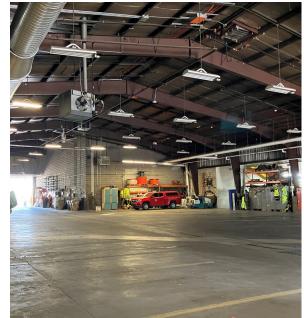
- The PSC's Office of Energy Innovation funded 15 feasibility studies to address "innovative pre-disaster mitigation through critical infrastructure microgrids."
- Slipstream and Madison submitted a proposal focusing on the Streets/Engineering site

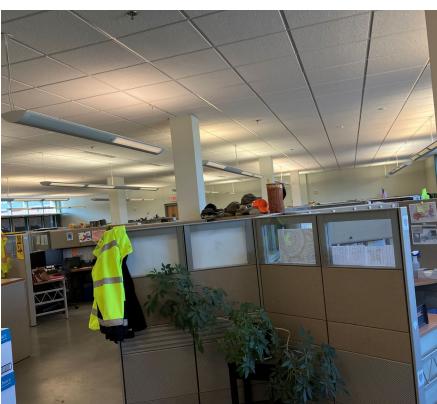

Why this site?

Site overview

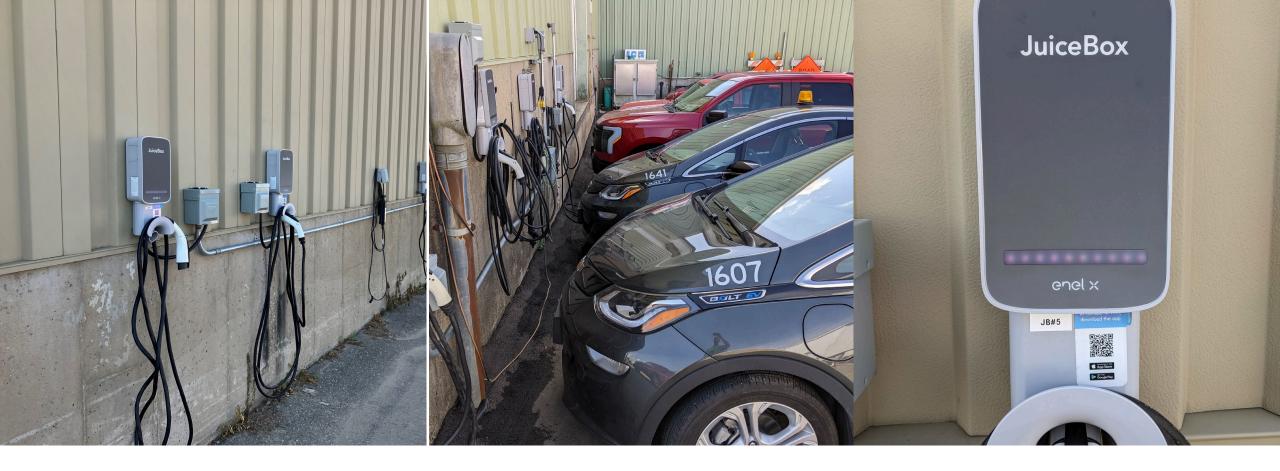
LOCATION

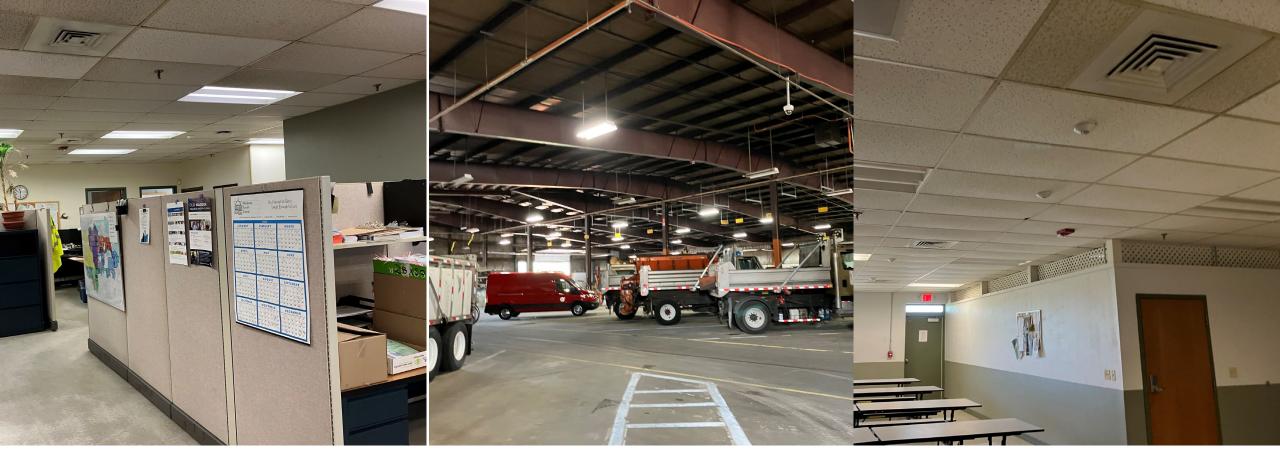
ENGINEERING OPERATIONS


60,940 square feet. Office, Service, Garage. Multiple additions (2006, 2017).

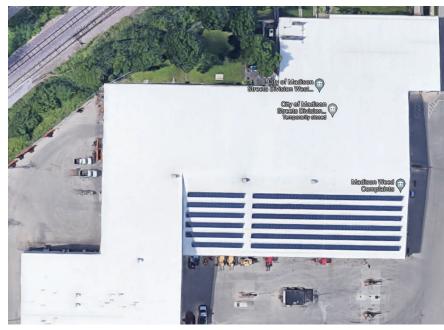

STREETS WEST

75,922 square feet. Office, Service, Vehicle Garage. Ongoing retrofits.




Engineering Operations: Spaces

Engineering Operations: Electric Vehicles


Engineering Operations: PV (and more to come)

Streets West: Spaces

Streets West: PV (and more to come)

Microgrid optimization

Research questions

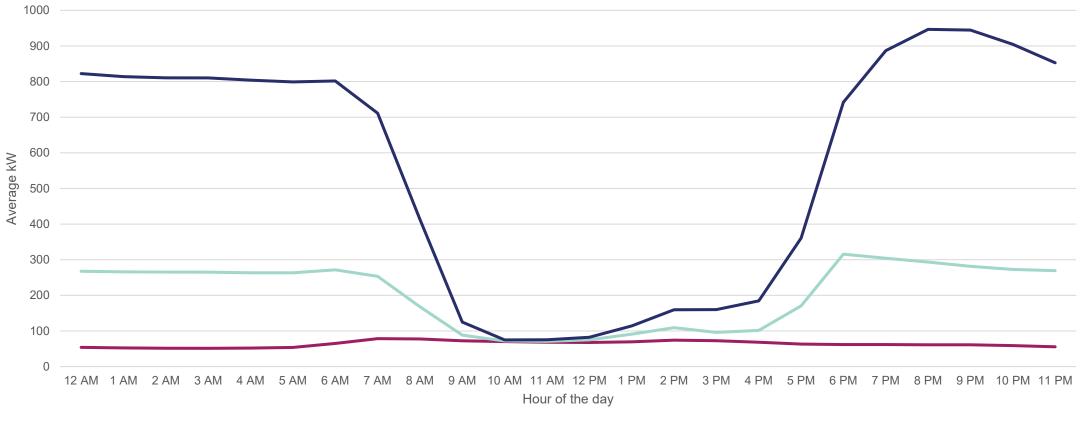
What are the key functions the facility should be able to provide?

What are the additional benefits the City of Madison hopes to receive from the microgrid?

What are the potential system configurations to serve those functions?

- Length of outages to cover
- Load curtailment
- BESS capacity and duration
- Vehicle electrification schedule

What are the associated costs and benefits of each configuration?

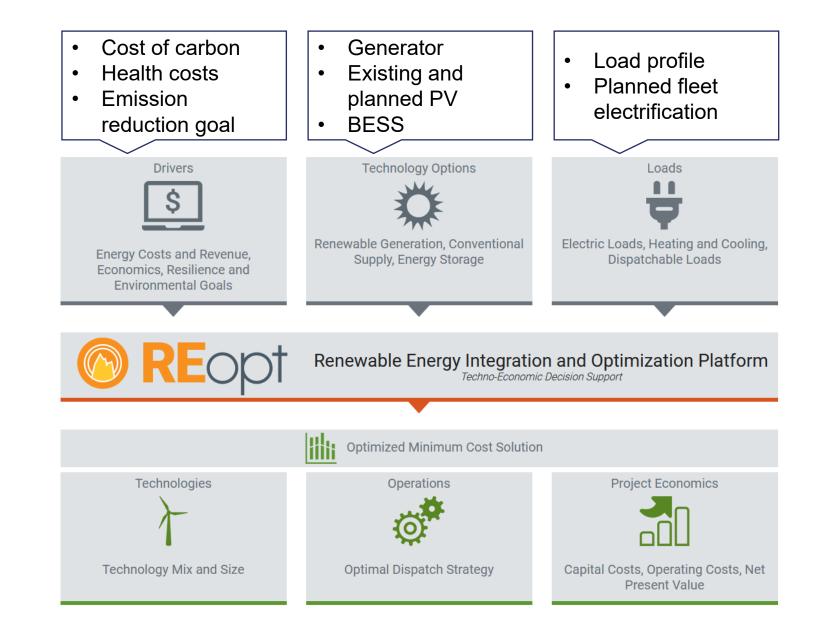

- Environmental benefits
- Capital cost
- O&M costs
- Bill savings or revenue potential

Fleet electrification schedule

Load profile	Additional EVs	Additional kWh	Total kWh	Load growth vs baseline
Baseline	8	552,000	552,000	-
Phase 1	117	1,231,000	1,783,000	323%
Phase 2	105	3,656,000	5,439,000	985%
Total	230	5,439,000		

Additional considerations:	Will the fleet size change?	Which vehicles must charge during outages?	What about staff personal vehicles?
----------------------------	-----------------------------	--	---

Fleet electrification load


Base case Phase 1 Phase 2

This is what 200 kW of PV looks like

~500 kW is the limit of solar potential on rooftops at this site

REopt Optimization

	Variable	Input	Source
	Load	Interconnected facilities	
	Solar PV capacity	483 kW	Existing and planned
	Net metering limit	100 kW	
	BESS \$/kWh	\$388	NREL + Lazard
	BESS \$/kW	\$775	NREL + Lazard
Constant Inputs	Utility Rate (\$/kWh)	On-peak: \$0.114 Off-peak: \$0.053	MGE CG-4 C&I TOU Level B Three-Phase
inputs	Wholesale Rate (\$/kWh)	On-peak: \$0.047 Off-peak: \$0.034	MGE
	Emissions data	Hourly values for Upper Midwest	AVERT
	Carbon Price	\$51/ton	Federal value
	Health costs (\$/ton)	NO _x : \$19,452 SO ₂ : \$40,551 PM2.5: \$139,804	NREL defaults based on CACES EASIUR model

•>>

22

Scenario details

Inputs	Base case	Phase 1	Phase 1 BESS	Phase 2	Phase 2 BESS
Normal load profile	Facility	Facility + phase 1 EVs	Facility + phase 1 EVs	Facility + phase 2 EVs	Facility + phase 2 EVs
Critical load profile	Facility	Facility	Facility	Facility + phase 1 EVs	Facility + phase 1 EVs
Battery constraint	<10 MWh	<10 MWh	=10 MWh	<10 MWh	=10 MWh
Annual kWh	552,000	1,780,000	1,780,000	5,430,000	5,430,000

Load profiles: Four basic scenarios

		Normal load				
		Facility	+ Phase 1 EVs	+ Phase 2 EVs		
l load	Facility	Base case	Scenarios 1 and 2			
Critical load	+ Critical Phase 1 EVs			Scenarios 3 and 4		

Scenario results

Scenario	Base case	Phase 1	Phase 1 BESS	Phase 2	Phase 2 BESS
BESS capacity (kW)	40	49	417	73	1,308
BESS energy (kWh)	52	65	10,000	96	10,000
Initial Capital Costs	\$51,000	\$63,000	\$4,203,000	\$94,000	\$4,894,000
Net present value	\$5,700	\$8,200	-\$6,272,000	\$7,500	-\$5,443,000
Simple Payback	0	0	17	1	>25
Annual Total Renewable Energy	110%	34%	33%	11%	11%
Lifecycle CO ₂ emissions (tons)	-1,300	22,400	19,600	92,700	84,800
Emissions reduction	-	2%	14%	1%	9%
Resiliency Hours (Avg)	218	218	3,240	10	97

Scenario results: Base case

Scenario	Base case	Phase 1	Phase 1 BESS	Phase 2	Phase 2 BESS
BESS capacity (kW)	40	49	417	73	1,308
BESS energy (kWh)	52	65	10,000	96	10,000
Initial Capital Costs	\$51,000	\$63,000	\$4,203,000	\$94,000	\$4,894,000
Net present value	\$5,700	\$8,200	-\$6,272,000	\$7,500	-\$5,443,000
Simple Payback	0	0	17	1	>25
Annual Total Renewable Energy	110%	34%	33%	11%	11%
Lifecycle CO ₂ emissions (tons)	-1,300	22,400	19,600	92,700	84,800
Emissions reduction	-	2%	14%	1%	9%
Resiliency Hours (Avg)	218	218	3,240	10	97

Net zero energy

Net zero emissions

5 days of backup power

Generator fuel costs <\$100

_	5	
•	4	

Scenario results: Minimal BESS

Scenario	Base case	Phase 1	Phase 1 BESS	Phase 2	Phase 2 BESS
BESS capacity (kW)	40	49	417	73	1,308
BESS energy (kWh)	52	65	10,000	96	10,000
Initial Capital Costs	\$51,000	\$63,000	\$4,203,000	\$94,000	\$4,894,000
Net present value	\$5,700	\$8,200	-\$6,272,000	\$7,500	-\$5,443,000
Simple Payback	0	0	17	1	>25
Annual Total Renewable Energy	110%	34%	33%	11%	11%
Lifecycle CO ₂ emissions (tons)	-1,300	22,400	19,600	92,700	84,800
Emissions reduction	-	2%	14%	1%	9%
Resiliency Hours (Avg)	218	218	3,240	10	97

Increased load and emissions

> Positive NPV

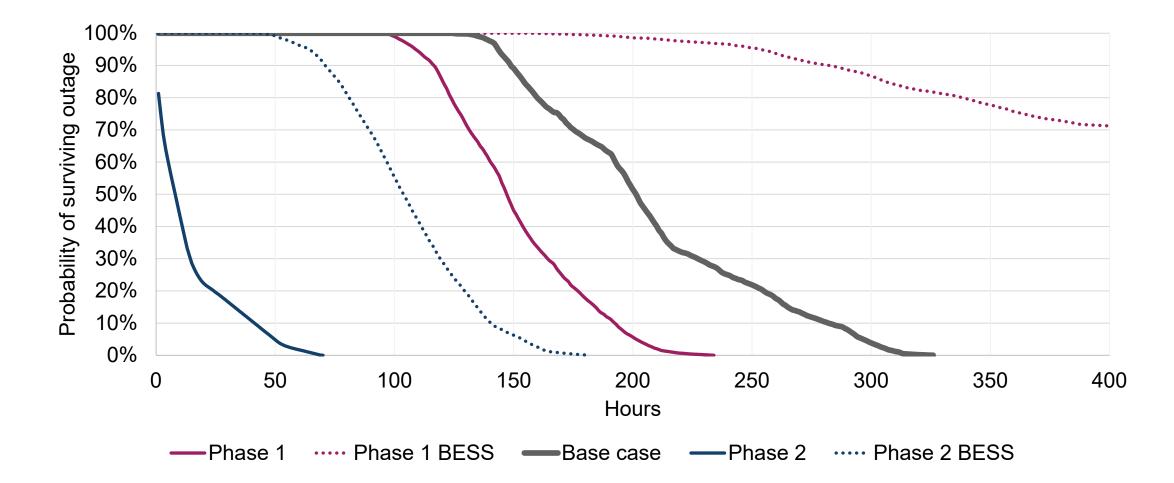
Fast payback

Reduced resiliency

Scenario results: Maximize BESS

Scenario	Base case	Phase 1	Phase 1 BESS	Phase 2	Phase 2 BESS
BESS capacity (kW)	40	49	417	73	1,308
BESS energy (kWh)	52	65	10,000	96	10,000
Initial Capital Costs	\$51,000	\$63,000	\$4,203,000	\$94,000	\$4,894,000
Net present value	\$5,700	\$8,200	-\$6,272,000	\$7,500	-\$5,443,000
Simple Payback	0	0	17	1	>25
Annual Total Renewable Energy	110%	34%	33%	11%	11%
Lifecycle CO ₂ emissions (tons)	-1,300	22,400	19,600	92,700	84,800
Emissions reduction	-	2%	14%	1%	9%
Resiliency Hours (Avg)	218	218	3,240	10	97

Reduced emissions


Negative NPV

Long payback

Resiliency increases

Outage survivability as a microgrid

Accounting for resiliency and emissions

	Base case	Phase 1	Phase 2	Phase 1 BESS	Phase 2 BESS
Total cost	\$122,200	\$208,600	\$211,000	\$7,503,000	\$8,210,400
Energy benefit	\$319,600	\$274,400	\$233,500	\$388,900	\$282,400
Resiliency benefit	\$2,248,900	\$2,746,700	\$916,200	\$2,746,700	\$6,633,300
NPV with resiliency	\$2,446,300	\$2,812,500	\$938,700	-\$4,367,400	-\$1,294,700

Emissions benefit	\$0	\$91,200	\$92,500	\$924,800	\$2,285,200
NPV with emissions + resiliency	\$2,446,300	\$2,903,700	\$1,031,200	-\$3,442,600	\$990,500

Conclusion

Next steps

Implement
microgrid-ready
inverters

- Upgrade existing inverters
- Specify microgridready for future inverters

Plan for a BESS

 Perform a site survey to identify locations

 Consider replacement strategies factoring in fleet electrification Implement managed EV charging

- Upgrade existing chargers
- Implement smart charging

Electrically interconnect Streets and Engineering

- Share one BESS
- Eliminate diesel generator
- Collectively manage loads and sources

Next steps: DOE Connected Communities project

Implement microgrid-ready inverters

- Upgrade existing inverters
- Specify microgridready for future inverters

Plan for a BESS

- Perform a site survey to identify locations
- Consider replacement strategies factoring in fleet electrification

Implement managed EV charging

- Upgrade existing chargers
- Implement smart charging

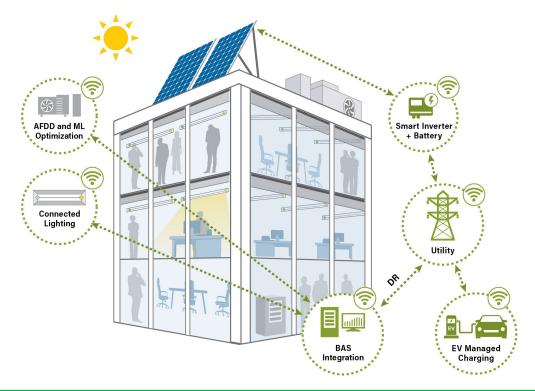
Electrically interconnect Streets and Engineering

- Share one BESS
- Eliminate diesel generator
- Collectively manage loads and sources

DOE Connected Communities

DOE Invests \$61 Million for Smart Buildings that Accelerate Renewable Energy Adoption and Grid Resilience

OCTOBER 13, 2021


Energy.gov » DOE Invests \$61 Million for Smart Buildings that Accelerate Renewable Energy Adoption and Grid Resilience

Ten "Connected Communities" Will Equip More than 7,000 Buildings with Smart Controls, Sensors, and Analytics to Reduce Energy Use, Costs, and Emissions

Connecting Communities for Sustainable Solutions

Project Summary

This project will demonstrate GEB in Madison's publicly owned facilities. It will deploy reliable and cost-effective efficiency and demand flexibility strategies in buildings, behind-the-meter electric vehicle charging, and solar energy production. We will then scale the lessons learned to a broader audience. This Connected Community project will support increased integration of renewables into the grid, better maintain voltage limits on the transmission and distribution system and improve both the resilience of utility customer infrastructure and financial outcomes.

Key Partners

Slipstream (lead)

MGE

RMI ACEEE

City of Madison

Baseline

Existing conditions: typical lighting (fluorescent with minimal controls), HVAC (VAV and RTU with DDC), EV chargers (unmanaged Level 2), and PV w/o batteries or smart inverters.

Project Goals and Impact

Application	Energy Savings (kWh)	Peak Load Shed (kW)	Continuous Demand Management (kW)	Load Shift (kW/kWh)
Building Load Shaping	1,420,000	250	590	n/a
EV Managed Charging	n/a	n/a	245	96/192
Smart Inverters + Batteries	n/a	n/a	120	120/240
Total	1,420,000	250	955	216/432

• Reduce emissions by 889 ton CO2_e and utility cost by \$472,000 with a simple payback under 11 years.

- Improved IEQ, occupant and operator satisfaction.
- Scale through broader market transformation efforts.

GEBs for a mid-size utility in a mid-size city

2022 – 2024: Demonstrate GEB elements in City of Madison facilities.

Application	Quantity	Strategies Demonstrated	
		Enhanced energy efficiency of HVAC and lighting	
Building Load Shaping	5-6 municipal buildings; 300,000 ft ²	Load shed via Automated Demand Response (ADR) of HVAC and lighting	
EV Managed Charging	20 Level 2 chargers serving 40 EV passenger vehicles	Load shift via managed charge and supplemental batteries	
Smart Inverters + Batteries	Upgrade to smart inverters on 10 photovoltaic (PV) systems; Add batteries to 2 sites	Smart inverter functionality Load shift via batteries	

2023 – 2025: Develop a utility pilot GEB program for medium-to-large commercial and industrial customers.

- 10 buildings (500,000 square feet), EV charging stations (750 kW), and battery systems (80 kW/160 kWh).
- Centrally managed and optimized through a Demand Response Management System.
- 2025 2026: Scale these impacts
 - Define replicable GEB implementation models for building owners, designers, operators, Midcontinent Independent System Operator (MISO) and policy makers

Questions?

Lee Shaver

Energy Engineer Ishaver@slipstreaminc.org

Maddie Koolbeck

Research Analyst mkoolbeck@slipstreaminc.org

Jeannette LeZaks

Director of Research and Innovation jlezaks@slipstreaminc.org

Scott Schuetter

Principal Engineer sschuetter@slipstreaminc.org